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Abstract—This paper presents a global 3D feature descriptor
for object recognition and grasping. The proposed descriptor
stems from the clustered viewpoint feature histogram (CVFH)
feature descriptor. Since the CVFH feature descriptor relies on
shape information only, it obtains a poor performance when
recognizing the objects with similar shapes. In order to improve
the robustness and accuracy of object recognition, we extend
CVFH feature descriptor with color information. Then this
new global 3D feature descriptor is tested for multiple classes
of 3D object classification by using support vector machines
(SVM), and it is evaluated with a public dataset and real scenes
respectively. The experimental results show that the proposed
descriptor outperforms the CVFH feature descriptor in terms
of recognition rate. Finally we utilize the proposed descriptor
on our grasping system to recognize and grasp the objects,
showing that the grasping system can accomplish the tasks
well.
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I. INTRODUCTION AND RELATED WORK

Object recognition plays a key role for robot grasping,

because the automation of robot grasping in a warehouse

not only needs to identify what the object is, but also

requires where the object is. Object recognition can make

a robot easier get these kinds of information. Besides,

object recognition is widely used in many areas, such

as objects sorting, objects manipulation, robot localization

and navigation. However, to design a robust and effective

object recognition system is still a relatively challenging and

difficult task.

A common way to implement object recognition is to

extract the features from the objects in the 2D image plane

and match these features with corresponding features of

previously stored object models, such as SIFT[1] image

features, SURF[2] image features and ORB[3] image fea-

tures. These methods can obtain a good performance on high

textured objects, but relatively inefficiency on low textured

ones.

With the recent advent of low-cost, real-time stereo sen-

sors, such as the RGB-D sensor Microsoft Kinect[4], 3D

feature descriptors are widely used in object recognition.

There are two types of 3D feature descriptors, including

local 3D feature descriptor and global 3D feature descriptor.

For the former, the local 3D feature descriptor relies on

the local repeatable key points which are extracted from the

surface of the 3D object, and it is computed for individual

key point, each key point only has one local 3D feature

descriptor. These local 3D feature descriptors are used to

match with corresponding local 3D feature descriptors of

previously saved object models for object recognition. There

are some types of local 3D feature descriptors, which are

used for object recognition, such as the point feature his-

togram (PFH)[5] descriptor, the fast point feature histograms

(FPFH)[6] descriptor, the radius-based surface descriptor

(RSD)[7] and the signature of histograms of orientations

(SHOT)[8] descriptor. These methods can perform well on

the objects with rich geometrical information and obtain the

exact position of the object. Besides, they can be directly

applied on the cluttered scenes and don’t need segment the

objects from the scenes. However, because of the complexity

of the local 3D feature descriptors in the features matching

stage, the local 3D feature descriptors need a lot of compu-

tational resource for implementing object recognition.

According the later one, the global 3D feature descriptor is

designed for describing the whole object, which means that

each object only has one single global 3D feature descriptor.

These global 3D feature descriptors can be used for object

recognition and classification by the means of features

matching. Obviously, the global 3D feature descriptor can’t

be directly applied on the cluttered scenes. Thus we have to

segment the objects from the scenes before using the global

3D feature descriptor for object recognition. There are some

types of global 3D feature descriptors, which are used for

object recognition, such as the ensemble of shape functions

(ESF)[9] descriptor, the global radius-based surface descrip-

tor (GRSD)[10], the viewpoint feature histogram (VFH)[11]

descriptor and the clustered viewpoint feature histogram

(CVFH)[12] descriptor. These global 3D feature descriptors

reduce computational burden, make features matching faster

and require less memory resources to store the object models

with respect to the local 3D feature descriptor, since its

complexity is less than the local ones.
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These aforementioned 3D feature descriptors are only

based on the shape information of the objects, which obtain a

poor performance when recognizing the objects with similar

shapes but different textures. There are also some types of

3D feature descriptors which combine shape information

with texture information, such as Color-SHOT (CSHOT)[13]

descriptor. It is a local 3D feature descriptor which based on

the shape information and the color information. Thus it can

utilize both shape and textures information, and improve the

accuracy of object recognition by feature matching. But it

still needs extra memory resources to store the object models

and computational resources for feature matching.

In this paper, the proposed method can improve the

robustness and accuracy of object recognition. The contribu-

tions of this paper are: (1) We propose a global 3D feature

descriptor based on both shape and color information, and

it is built by extending the clustered viewpoint feature

histogram (CVFH)[12] descriptor with color information. (2)

We train the multi-class support vector machine (SVM)[14]

classifier off-line, then we use this trained classifier for

object recognition instead of feature matching. (3) Our

proposed feature descriptor is evaluated with both public

dataset and real scenes, and it is utilized on our proposed

grasping system to recognize and grasp the objects.

The structure of this paper is organized as follows. Our

proposed methods is described in Section II. The results and

analysis of experiments are presented in Section III. Finally,

conclusions and future work are made in Section IV.

II. METHODOLOGY

We begin this section by introducing the method of

segmentation first, which is use for segmenting the target

objects from scenes. Then we introduce our proposed feature

descriptor in detail. At the end of this section, we present

our grasping system.

A. Segmentation

Before utilizing the proposed 3D global descriptor to

recognize the object, we need to segment the target objects

from scenes. In this work, we use the Microsoft Kinect

to capture the 3D point cloud image, Figure 1 shows the

process of our method for segmentation.

As showing from Figure 1, the first work for segmentation

is capturing the 3D point cloud image of scene by Microsoft

Kinect, and then we filter the source scene point cloud to

obtain the region of the target objects. After that, we use the

random sample consensus (RANSAN)[14] algorithm to find

large planar objects and subtract these planar objects from

scene. Finally we utilize the Euclidean Cluster Algorithm

(based on Euclidean Distance)[15] to extract the target

objects from the scene.

RANSAN[14]: Firstly, this algorithm chooses a set of

points from point cloud image randomly, and estimates the

parameters of a mathematical model for the chosen set

Figure 1. The process of our method for segmentation

of points by the method of Minimum Variance Estimation

Algorithm. Then the RANSAN algorithm calculates the

error value of each point in point cloud image based on

the parameters of the model. If the value isn’t greater than

a predetermined threshold value, this point belong to the

planar object which denoted as inliers, otherwise this point

does not belong to the planar object which denoted as

outliers. After iteration, the set of points which has the

largest number of inliers is the planar object we need to

find.

Euclidean Cluster Algorithm[15]: Firstly, the algorithm

randomly selects a point p0 from point cloud image, this

point p0 is belong to the point set Q1 (Q1 = {p0}), and

the algorithm calculates the distance between point p0 and

its neighbor point qi. If the value of distance is lower than

the predetermined threshold value, adding this point qi to the

point set Q1 (Q1 = {p0, qi}). Then this algorithm calculates

the distance of other point which belong to the point set Q1

from its neighbor point. Repeating previous steps, until the

algorithm can’t find a legal point add to the point set Q1, the

point set Q1 is the object we want to extract from the scene.

Similarly, we use the same method to extract other objects

from the scene, until all the objects are extracted from the

scene, the segmentation is completed.

B. The design of 3D global feature descriptor

Our proposed feature descriptor is a global 3D feature

descriptor, which based on both shape and color informa-

tion, so that we can make use of both shape and texture

information of object. This proposed feature descriptor stems

from clustered viewpoint feature histogram (CVFH)[12] de-

scriptor, and here we denote the proposed feature descriptor

as Color-CVFH. Next we give a description of the CVFH

descriptor.

CVFH[12]: CVFH is an extension to the viewpoint feature

histogram (VFH)[11] descriptor. The VFH descriptor is built

by a histogram of the four different angular distributions

based on the surface normal of the object, and it contains

two components, one is viewpoint direction component and

another is extended FPFH[6] component. In this work, we
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define pc and nc (||nc|| = 1) as the centroid of the whole

surface points and the normal of the centroid, and use (ui,

vi, wi) defines a coordinate frame for each point pi of the

whole surface points[11].

⎧⎪⎪⎨
⎪⎪⎩

ui = nc

vi =
pi − pc
||pi − pc|| × ui

wi = ui × vi

(1)

The ni is the norm of each point pi, then the four different

types of angles can be calculated as following[11].

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cos(αi) = vi · ni

cos(βi) = ni · pc
||pc||

cos(Φi) = ui · pi − pc
||pi − pc||

θi = atan2(wi · ni, ui · ni)

(2)

The cos(αi), cos(Φi) and θi are the three types of angles

which are used to build the extended FPFH[6] compo-

nent, and cos(βi) is used to build the viewpoint direction

component. In order to improve the robust to deal with

occlusion object, the CVFH is obtained by calculating the

VFH histogram for each region of the object surface instead

of a single VFH histogram for the whole surface, and this

region is stable, smooth region which is extracted from the

whole surface by using region-growing segmentation. Thus,

the CVFH descriptor has the extended FPFH component and

viewpoint direction component. Besides, the CVFH descrip-

tor has an additional component which is shape distribution

component (SDC)[12], it describes the distribution of the

points around the region’s centroid, and SDC can be defined

as following[12].

SDC =
(pc − pi)

2

max((pc − pi)2)
where i = 1, 2, ..., N (3)

In Equation 3, N presents the number of the points for the

whole point cloud. The SDC component has 45 histogram

bins, each angular distribution of the extended FPFH[6]

component also has 45 histogram bins, and the viewpoint

direction component has 128 histogram bins. Thus a CVFH

histogram has 308 bins in total.

Color-CVFH: In this work, we design a global feature

descriptor named as Color-CVFH, and it contains two parts,

one is a global color histogram, and another is a CVFH

histogram. The points of the point cloud which are captured

by the RGB-D sensor Microsoft Kinect not only contain the

position information, but also have the color information,

and the color information is described in RGB space. By

using the aforementioned method of segmentation, we can

get the individual object from the scene, and we can also

obtain the color information of the individual object in RGB

space. As the color features in HSV space is more effective

than the color features in RGB space for object recognition,

we convert the color information from RGB space to HSV

space. Because the hue value is a very important component

in HSV space for object recognition, we set 90 bins for the

hue value histograms, and the size of histogram bins for

saturation value and value noise are both set as 51. Thus the

global color histogram we design has 192 histogram bins

in total, and each object only has one single global color

histogram. Now we denote the global color histogram of

the object Oi as Ci, and the CVFH histogram of object Oi

is denoted by Vi, the Color-CVFH descriptor of the object

Oi is denoted by Fi. The Color-CVFH descriptor Fi can be

defined as following.

Fi = Ci ∪ Vi (4)

From the definition of Color-CVFH descriptor Fi, we can

see the first part of Color-CVFH descriptor is the global

color histogram Ci, and then is followed by the CVFH

histogram Vi. Thus the Color-CVFH descriptor has 500 his-

togram bins in total. The structure of Color-CVFH descriptor

is showed as Figure 2. The Color-CVFH descriptor utilize

both shape and color information, and it can be easily used

to train the multi-class SVM classifier for object recognition.

Figure 2. The structure of Color-CVFH descriptor

C. The grasping system

In this work, we need to utilize the proposed descriptor

Color-CVFH on our grasping system to sort, pick and place

objects. The overview of our grasping system is showed as

Figure 3.

Figure 3. The overview of grasping system
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From the Figure 3 we can see the first step of grasping

system is that the system captures the 3D point cloud by the

RGB-D sensor Microsoft Kinect. Then it extracts the target

objects from scene by using the method of RANSAN[14]

and Euclidean Cluster[15] algorithms. When the grasping

system obtaining the target objects, this grasping system cal-

culates the Color-CVFH descriptor of these objects, and uses

the multi-class SVM classifier based on the Color-CVFH

descriptor which we have trained before to recognize these

target objects. After that, the grasping system can obtain the

class and location of each target object. In this work, we use

the centroid of each target object as the grasping point for the

robotic manipulator to grasp. In order to control the robotic

manipulator to grasp the target objects, the grasping system

needs to calculate the solutions of inverse kinematics for

the robotic manipulator. Here this grasping system leverages

the geometric method to calculate the solutions of inverse

kinematics, because the geometric method not only can

save the computational resources, but also can obtain high

accuracy solutions of inverse kinematics. After the grasping

system obtaining the solutions of inverse kinematics, the

end effector of robotic manipulator can approach to each

target object, then grasp the target object according to the

grasping point which is calculated by the grasping system

before. Finally, the robotic manipulator picks up the target

object, and places it to its specific location according the

class of the target object. After that, the grasping task has

been completed.

III. EXPERIMENTS AND RESULTS

In this section, the Color-CVFH descriptor is evaluated

with a public dataset, which is Washington University RGB-

D dataset[16]. Then the Color-CVFH descriptor is evaluated

with real scenes (150 different scenes in total). In these

experiments, we use four metrics which are recall, preci-

sion, accuracy and F1-score to evaluate the performance of

the Color-CVFH descriptor and the CVFH descriptor. The

definition of these four metrics are showed as following.

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

F1− score =
2 · Precision ·Recall

Precision+Recall
(8)

In these four equations, TP presents the number of true

positives, FP presents the number of false positives, TN

presents the number of true negatives and FN presents the

number of false negatives.

At the end of this section, in order to evaluate the

robustness of the Color-CVFH descriptor, we utilize the

Color-CVFH descriptor on our grasping system to sort, pick

and place objects.

A. Evaluated with a public dataset

The public dataset which is used for evaluating the

performance of the Color-CVFH descriptor is Washington

University RGB-D dataset[16], which contains 300 objects

in 51 categories, and each instance is captured by 3 different

camera poses. Here we show some samples of the public

dataset in Figure 4.

Figure 4. The samples of the public dataset

In this experiment, we select six categories of the objects

from this public dataset, which are apple, tomato, lime,

orange, cereal box and food box. Apple and tomato have

similar shapes and colors, lime and orange have similar

shapes but different colors, cereal box and food box are both

rectangular shaped objects. Each category of the objects is

selected 840 point clouds from the public dataset. These six

categories of objects are showed as Figure 5.

Figure 5. One view of one object from each of the six categories used in
the experiment. Left to right: apple, tomato, lime, orange, cereal box and
food box.

This experiment is used for evaluating the performance

of the Color-CVFH descriptor and the CVFH descriptor by

using multi-class SVM classifier. We select 630 point clouds

of each category for training the multi-class SVM classifier,

and the rest of the selected point clouds are used for testing.

This experiment is used for evaluating the performance of

the Color-CVFH descriptor and the CVFH descriptor for

object recognition, the results of the experiment are showed

as Table I.

From the Table I, we can see the classifier which is

trained by the CVFH descriptor has a poor performance

compared to the Color-CVFH descriptor. This classifier are

much more likely to consider the apple and orange as the
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Table I
THE RESULTS OF THE EVALUATION FOR CVFH AND COLOR-CVFH BY USING THE PUBLIC DATASET

CVFH Color-CVFH

Recall Precision Accuracy F1-score Recall Precision Accuracy F1-score

Apple vs. all 71.43% 85.71% 93.25% 0.78 100% 100% 100% 1

Tomato vs. all 85.24% 50% 83.33% 0.63 100% 100% 100% 1

Lime vs. all 14.76% 50% 83.33% 0.23 100% 100% 100% 1

Orange vs. all 88.10% 75.51% 93.25% 0.81 100% 100% 100% 1

Cereal box vs. all 100% 100% 100% 1 100% 100% 100% 1

Food box vs. all 100% 100% 100% 1 100% 100% 100% 1

same object, and it also likely to recognize the lime and

tomato as the same thing, because apple and orange have

similar shapes, lime and tomato also have similar shapes.

However cereal box and food box get good results in the

metrics of recall, precision, accuracy and F1-score, because

the CVFH descriptor is based on the shape information, and

cereal box and food box have different shapes though they

are both rectangular shaped objects.

In contrast, the classifier which is trained by the Color-

CVFH descriptor has a remarkable performance in this

experiment, because the Color-CVFH descriptor takes ad-

vantages of shape and color information, unlike the CVFH

descriptor based on the shape information only. Thus this

classifier can recognize every object in the testing set cor-

rectly, though apple and tomato have similar shapes and

colors, this classifier also can distinguish them correctly.

B. Evaluated with real scenes

In this experiment, the Color-CVFH descriptor and CVFH

descriptor is evaluated with real scenes. Here we choose

objects including bottle0, cup, ball, bottle1, bottle2 and box

for this experiment, which are showed in Figure 6, and their

point clouds are showed in Figure 7. In this work, we sort

these objects in four categories which are bottle0, cup, ball

and others. The bottle1, bottle2 and box are belong to the

category of others. Each category of the objects except the

category of others has 100 different point clouds which are

captured by RGB-D sensor Microsoft Kinect on different

views. The category of others has 45 different point clouds

in total. From the Figure 6 and Figure 7, we can see bottle0

and bottle1 have the same shape but different colors, the

bottle0 and bottle2 have similar shapes and colors in some

views, the cup and box also have similar shapes and colors

in some views, while the ball is the only spherical shaped

object here. Then we extract the Color-CVFH features and

CVFH features from these 345 different point clouds, and

we use these two types of feature descriptors to train the

four classes SVM classifier respectively.

Finally we use the aforementioned method of segmen-

tation to extract the target objects from the real scenes.

In this experiment, we use 150 different real scenes to

Figure 6. One view of the objects used in the experiment. For the first row,
left to right: bottle0, cup, ball. For the second row, left to right: bottle1,
box, bottle2.

Figure 7. The point cloud of the objects used in the experiment (One
view). For the first row, left to right: bottle0, cup, ball. For the second row,
left to right: bottle1, box, bottle2.

evaluate the performance of the Color-CVFH descriptor and

CVFH descriptor, and here we show some samples of real

scenes in Figure 8. Then we utilize these two trained SVM

classifiers to recognize the target objects, and the results

of experiment are showed in Table II. From the Table II,

we can see the classifier based on the CVFH descriptor

doesn’t perform well in this experiment compared to the

Color-CVFH descriptor. As the bottle0, bottle1 and bottle2

have similar shapes, this classifier recognizes some objects

belonged to the bottle0 as bottle1 or bottle2 (the bottle1
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(a) (b) (c)

Figure 8. Three samples of real scenes. (a): There are bottle0, box, cup, ball on the planar object. (b): There are ball, bottle0, cup, bottle1 on the planar
object. (c): There are bottle2, ball, bottle0, cup on the planar object.

and bottle2 are belong to the category of others), and it also

recognizes some objects belonged to the bottle1 or bottle2 as

bottle0, thus the bottle0 obtains a poor precision (61.39%).

Besides, this classifier recognizes some objects belonged to

the cup as box (the box is belong to the category of others),

and therefore the cup doesn’t obtain a good precision (90%).

While the ball has good performance in this experiment,

because the ball has distinct shape in this dataset.

However, the classifier which is trained by the Color-

CVFH descriptor has a remarkable performance in this

experiment. This classifier can recognize every object in

these real scenes, though the bottle0 and bottle2 have similar

shapes and colors, this classifier can also distinguish them

correctly.

All in all, the CVFH descriptor can perform well for

recognizing the objects with different shapes, such as cereal

box and food box in the first experiment. But it obtains

poor performance for the objects with similar shapes, such

as bottle0 and bottle1 in the second experiment. While

our proposed descriptor Color-CVFH obtains remarkable

recognition performance both in public dataset and real

scenes, even the objects with similar shapes and colors,

such as bottl0 and bottle2 in the second experiment. All

these results of these two experiments, which show that our

proposed descriptor Color-CVFH have high robustness and

accuracy for object recognition.

C. Tested with grasping system

In this experiment, we use the four classes SVM classifier

based Color-CVFH descriptor which trained in the second

experiment, and utilize it to the aforementioned grasping

system. Then we test it to recognize and grasp three different

objects, which are showed in Figure 9.

From the figure 10, we can see our proposed grasping

system not only can figure out the category of the target

objects, but also can grasp the objects and place them to their

specify location respectively. From these three experiments,

we can see the Color-CVFH descriptor has a remarkable

performance both in public dataset and real scenes, and it

Figure 9. The real scene of grasping task.

can also be utilized for object recognition and grasping in

real scenes, and accomplish these tasks well, which means

that the proposed descriptor can perform well for grasping

applications.

IV. CONCLUSION AND FUTURE WORK

This paper presents a global 3D feature descriptor which

combine shape and color information for object recognition

and grasping, and we propose a method of segmentation as

the preprocessing before utilizing our proposed 3D feature

descriptor. We also present a method that using multi-

class SVM classifier to recognize target objects instead of

features matching, which can save computational time and

memory resources. Besides, we evaluate the performance of

our proposed descriptor Color-CVFH by using both public

dataset and real scenes, and the results of the experiments

show that this proposed descriptor not only perform well

for recognizing the objects with different shapes, but also

make a remarkable performance for recognizing the objects

with similiar shapes. Finally, we present our own grasping

system, and the utilize the Color-CVFH descriptor in this

grasping system for objects recognition and grasping, and

the results show that our grasping system can accomplish

these tasks well.
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Table II
THE RESULTS OF THE EVALUATION FOR CVFH AND COLOR-CVFH BY TESTING IN REAL SCENES

CVFH Color-CVFH

Recall Precision Accuracy F1-score Recall Precision Accuracy F1-score

Bottle0 vs. all 82.67% 61.39% 82.67% 0.70 100% 100% 100% 1

Cup vs. all 96.00% 90.00% 96.33% 0.93 100% 100% 100% 1

Ball vs. all 96.00% 100% 99.00% 0.98 100% 100% 100% 1

(a) (b) (c)

(d) (e) (f)

Figure 10. The result of experiment for grasping task. (a) to (f) show the process of grasping.

The datasets which are used for our experiments aim at

recognizing and grasping target objects, thus our proposed

descriptor can obtain remarkable recognition performance in

these experiments. However, our proposed descriptor may

not distinguish the objects with the same shape and color

information correctly, and our current work only consider

the object recognition without the pose estimation of object.

Thus we will consider the pose estimation of object and

combine our descriptor with more texture information in our

future work, which make our descriptor more robustness and

accuracy for object recognition and grasping.
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